Plant and animal biology - Molecular biology A - L
Module Plant and animal biology

Academic Year 2022/2023 - Teacher: ROSARIA ACQUAVIVA

Expected Learning Outcomes

Knowledge and understanding: the course provides the tools to describe the fundamental biological structures and processes of the cell and living organisms using appropriate scientific terminology;

Ability to apply knowledge and understanding: the student acquires the skills necessary to understand the importance of variability so that we can distinguish and motivate the difference between living organisms;

Learning skills: the student becomes able to use the knowledge on the basic mechanisms that regulate living matter and living organisms (animals and plants) as a substrate for the study of Molecular Biology and of other biological subjects in their Degree Course;

Making judgments: the student develops his critical ability to evaluate the implications and results of innovative discoveries in the field of cell biology and living organisms. The student is encouraged to follow innovative discoveries in cell biology and living organisms by consulting the scientific literature.

Course Structure

The course will be structured in frontal teaching with power point projection and/or short films. During the course there will be exercises and problem based learning. Should teaching be carried out in mixed mode or remotely, it may be necessary to introduce changes with respect to previous statements, in line with the programme planned and outlined in the syllabus.

Information for students with disabilities and / or SLD:
To guarantee equal opportunities and in compliance with the laws in force, interested students can ask for a personal interview in order to plan any compensatory and / or dispensatory measures, based on the teaching objectives and specifications needs. It is also possible to contact the CInAP contact person (Center for Active and Participatory Integration - Services for Disabilities and / or SLD) of the Department, prof.ssa Teresa Musumeci.

Required Prerequisites

No minimum prerequisites

Attendance of Lessons

Attendance is compulsory according to the regulations of the teaching regulations of the Degree Course in CTF as indicated in the link: http://www.dsf.unict.it/corsi/lm-13_ctf

Detailed Course Content

Principles of classification of living organisms.

Autotrophy and heterotrophy organisms.

Virus: organization, morphology, main features and the relationship with the ecosystem.

DNA virus and RNA virus. Virus-virus interactions.

Organization of the plant body.

Classification of plants.

Morphology of the animal and plant cells: prokaryotic and eukaryotic organisms.

Structure and function of the cell: cell wall, cell membrane structure and function, cell permeability, transport, exocytosis and endocytosis.

Growth of the cell wall. Changes in the cell wall: lignification, mineralization, gelation, pigmentation.

Intracellular structures

Chloroplasts, chromoplasts, leucoplasts: structure and functions. Pigments. Biochemical mechanism of photosynthetic light reactions, photorespiration.

Vacuolar system: origin, development and functions.

Composition of the vacuolar constituents of pharmaceutical interest.

Metabolism: primary metabolites, intermediate metabolites and secondary metabolites.

Characters tissue. Systems of tissues and their classification.

Meristematic tissues or cells.

Adult tissues or definitive: system parenchyma, tegument system, conducting system, segregators system and mechanical system.

Form and structure of the leaf;  transpiration, guttation, abscission. Modifications of the leaves.
Form and structure of the flower. Form and structure of the stem. transport function: Xylem and phloem. Form and structure of the root. Secondary growth.

Cell cycle. DNA replication, mitosis, meiosis, mutations in the DNA.

Eterozygous, homozygous and hemizygous, dominant and recessive characters, genotype, phenotype and karyotype, Mendel's laws.

Genetic code, transcription, translation.

Part 1: 1 CFU - 7h  

The chemical composition of the cell: water, minerals, cellular macromolecules: amino acids, proteins, lipids, carbohydrates. Principles of classification of living organisms: virus,  prokaryotes, eukaryotes and their relationship.

Autotrophy and heterotrophy organisms.

Part 2: 2 CFU - 14h 

Difference between eukaryotic cell and prokaryotic cell, Structure and transport in the biological membrane. Organelles: endoplasmic reticulum; Golgi apparatus, mitochondria; Lysosomes, Peroxisomes; Ribosomes, Cytoskeleton; Core, Chromatin and chromosome

Part 3: 2 CFU - 14h 

Difference between plant cell and animal cell: Plastids. Overview of Photosynthesis; photorespiration; C3 plants and C4 plants; vacuoles. Primary metabolites, intermediate metabolites and secondary metabolites. Cell wall. Growth of the cell wall. Modifications of the cell wall: lignification, cutinization, suberification, mineralization, gelification, pigmentation. Vegetable tissues: meristematic tissues; Parenchymal tissues and tegumental tissues; conducting tissues;  secretory  tissues and mechanical  tissues.

Part 4: 1 CFU - 7h 

Cell division: cell growth, cell cycle and mitosis.Reproduction: asexual reproduction, sexual reproduction and meiosis, gametogenesis, ontogenetic cycles, metagenetic cycle. Overview of genetics: Heterozygous, homozygous and hemizygous, dominant and recessive characters, genotype, phenotype and karyotype, Mendel's laws. Cell cycle. DNA replication,  mutations in the DNA. Genetic code, transcription, translation. 

Part 5: 1 CFU - 7h 

Vegetable organography: Shape and structure of the leaf; stomata, transpiration, guttation, abscission. Modifications of the leaves.
Shape and structure of the flower. Shape and structure of the stem. Transport function: Xilema and Floema. Shape and structure of the root. Secondary growth.

Textbook Information

  1. Solomon, Berg, Martin -Biologia- Ed. Edises
  2. D. Sadava, D.V. Hillis, H.C. Heller, M.R. Berenbaum-Biologia-Ed.Zainichelli
  3. Solomon, Berg, Martin -Struttura e processi vitali nelle piante- Ed. Edises
  4. Poli F. - Biologia Farmaceutica - II Ed. - Pearson 2019

Course Planning

 SubjectsText References
1 Composizione materia vivente. Acqua e Sali minerali, Amminoacidi e Proteine, Carboidrati e Lipidi, Acidi NucleiciTesti 1, 2
2Organismi viventi, Virus, Procarioti, Eucarioti e loro rapporto Testi 1, 2
3Differenza tra cellula eucariotica e cellula procariotica, Struttura e trasporto della membrana biologica.Testi 1, 2
4Organelli: Reticolo endoplasmatico; Apparato di Golgi, Mitocondri; Lisosomi, Perossisomi; Ribosomi, Citoscheletro; Nucleo, Cromatina e cromosomiTesti 1, 2
5Differenza tra cellula vegetale e cellula animale: Plastidi. Cloroplasti. Cenni sulla Fotosintesi; Fotorespirazione; Piante C3 e piante C4; Vacuoli; Metaboliti secondari.Testi 1, 2, 4
6Parete cellulare. Accrescimento della parete cellulare. Modificazioni della parete cellulare: lignificazione, cutinizzazione, suberificazione, mineralizzazione, gelificazione, pigmentazioneTesti 1, 3, 4
7Tessuti vegetali: Tessuti meristematici; Tessuti parenchimatici e tessuti tegumentali; Tessuti meccanici, tessuti secretori e tessuti conduttoriTesti 1, 3, 4
8Cenni : Forma e struttura della foglia; stomi, traspirazione, guttazione, abscissione. Modificazioni delle foglie. Forma e struttura del fiore. Forma e struttura del fusto. Funzione di trasporto: Xilema e Floema. Forma e struttura della radice. Testi 1, 3
9Cenni di genetica: concetti di eterozigote, omozigote ed emizigote, dominanza e recessività dei caratteri, genotipo, fenotipo e cariotipo, Difetti congeniti; leggi di Mendel.Testi 1, 2
10Ciclo cellulare. Duplicazione del DNA, mitosi, meiosi, mutazioni a carico del DNA;Testi 1, 2
11Codice genetico, trascrizione, traduzione.Testi 1, 2

Learning Assessment

Learning Assessment Procedures

The exam dates are published on the website of the Department of Drug Science: http://www.dsf.unict.it/sites/default/files/files/ESAMI%20CDLM%20CTF(12).pdf. Learning assessment may also be carried out on line, should the conditions require it. Information for students with disabilities and / or SLD: To guarantee equal opportunities and in compliance with the laws in force, interested students can ask for a personal interview in order to plan any compensatory and / or dispensatory measures, based on the teaching objectives and specifications needs. It is also possible to contact the CInAP contact person (Center for Active and Participatory Integration - Services for Disabilities and / or SLD) of the Department, Prof.ssa Teresa Musumeci. Example Questions: 1) Una cellula eucariotica e una procariotica si differenziano perché A) La cellula eucariotica ha la membrana plasmatica B) La cellula procariotica è priva di nucleo C) La cellula eucariotica può avere flagelli D) La cellula eucariotica può avere parete cellulare E) La cellula procariotica non può sintetizzare proteine 2) Quale di queste caratteristiche NON è propria del complesso del Golgi? A) Nelle cellule vegetali, produzione di polisaccaridi della parete cellulare B) Elaborazione di proteine C) Formazione di vescicole secretorie contenenti glicoproteine D) Ricezione dei materiali provenienti dal RE E) Accumulo di prodotti della digestione cellulare